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Background
According to the US. Energy Information Administration

(EIA), in 2020, the residential and commercial building

0
sectors represented about 35 / O of the total energy

consumed in the United States.

Space heating and space cooling account for around

0
60 / 0 of total energy consumed in a building,

Energy consumptionin building

M Space heating M Space cooling ™ Lighting M Other




How are building systems controlled today?

Why RIL-based Control?

. {iﬁ Adaptive control
N—

A rule-based control system that operates on a fixed set of rules.

. Multi-objective
+ ' Optimization
- .“ Controller

A

Heating/Cooling
system r
r
Sensory Feedback J
Unable to adjust to complex, dynamic environments inside building, for- :
: . . . Fault detection
example: changing thermal demand, price fluctuation, dynamic

OCCUpancy.




Reinforcement Learning control framework
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Jiménez-Raboso, J, Campoy-Nieves, A, Manjavacas-Lucas, A, Gdmez-Romero, J., & Molina-Solana, M. (2021). Sinergym: A Building Simulation and
Control Framework for Training Reinforcement Learning Agents. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (pp. 319-323). Association for Computing Machinery.
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Environment /

Input Parameters

Thermostat heating setpoint, Mixed-use office building with dual setpoint thermostat
Thermostat cooling setpoint control. 4979.6 m2 building with three floors. Each floor
Zone Air Temperature (for each zone) has four perimeter zones and one core zone

Reward Functions as a trade-off between Energy and Comfort
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Implementation

* Algorithm — PPO (baseline) & MultiTaskPPO
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Zhang, G., Feng, L., & Hou, Y. (2021). Multi-task Actor-Critic with Knowledge Transfer via a Shared Critic. In Proceedings of The 13th Asian Conference on Machine Learning (pp. 580-593). PMLR.
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Algorithm 1 Multi-task actor-critic with a shared critic

. Input: State s: Reward r

Al g O rlthm Parameter: Task number ¢ = 1,2...M; Number of Episode F; Maximum steps of task per
episode T'; Transfer weight a;

Output: Critic n; g actor 6; g;

1: Randomly initialise actor my, and critic network V;, ., for task 7, i = 1,2...m;
2: Initialize episode counter e, e = ()

3: while ¢; < E; do

4:  for each task i do

5: Set step counter t = (
6: while ¢ < T; and not terminal state do
7: Select action a; ¢ ~ 7y, .
Execute a;; and state r; ;41 and s; 44
9: Store tuple (s;¢,@i¢, Tit+1,Sit+1)
10: Update step counter: ¢ <+t + 1
i1: end while
12: for each sample do
13: Compute advantage value using Eq.10
14: Compute shared advantage value using Eq.8
15: end for
16: Compute critic gradient using Eq.12
17: Compute actor gradient using Eq.11
18: Compute shared critic gradient using Eq.6

19:  end for

20:  Update episode counter e < e + 1

21: end while

22: return Critic and actor weights: 6; p,n; g:

Zhang, G., Feng, L., & Hou, Y. (2021). Multi-task Actor-Critic with Knowledge Transfer via a Shared Critic. In Proceedings of The 13th Asian Conference on Machine Learning (pp. 580-593). PMLR.
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Models

* MLP
* Time-discrete CNN (1D)

Input — timesteps every day at 10:00 AM Output
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Input = every consecutive timestep Output

tgaa | - - = | tg3 | g2 | tga | T4 | tan
tn—ld - - - tn—! trl—! tn—‘_l tn tn+1
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D630 AM 05:00 Asa 09:15 AM 0930 AM D545 AM 1000 AM 1Qth May, 2021 24" May, 2021
24" May, 2021 24 May, 2031
Sliding Window (Continuous Sequencing) Discrete Sequencing

Nisha Menon, Shantanu Saboo, Tanmay Ambadkar, & Umesh Uppili (2022). Discrete Sequencing for Demand Forecasting: A novel data sampling technique for time series forecasting, In 374
International Conference on Intelligent Data Science Technologies and Applications, IDSTA 2022, San Antonio, TX, USA, September 5-7, 2022 (pp. 61-67). IEEE.



Power consumption (Lower is better)

Results

Power consuption of different RL agents
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Comfort Violation (%) (Lower is better)

Comfort Violation (%) of different RL agents
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Reward of different RL agents
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Thank You!
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